Pembelajaran Fisika Kelas 10 IPA

Kegiatan Pembelajaran Kelas X IPA Sedang Berlangsung:

 LKPD Penjumlahan Vektor Metode Penguraian Vektor

KBM Fisika Kelas 10 IPA Tahun Pelajaran 2022/2023

Informasi Sekolah Kedinasan

Informasi lengkap, klik logo sekolah kedinasan!


Tampilkan postingan dengan label Fluida_Statis. Tampilkan semua postingan
Tampilkan postingan dengan label Fluida_Statis. Tampilkan semua postingan

Minggu, 24 Juli 2022

Fluida Statis: Kapilaritas

 Daftar Isi:

Mengapa warna sawi
mengalami perubahan
setelah dicelupkan ke
air yang berwarna?


9. Kapilaritas

Air yang diberi warna untuk memudahkan pengamatan

Kapilaritas adalah peristiwa naik atau turunnya permukaan zat cair pada pipa kapiler, seperti yang diperlihatkan pada Gambar 7.22. Pada gambar tersebut, diameter dalam pipa kapiler dari kiri ke kanan semakin kecil. Semakin kecil diameter dalam pipa kapiler, kenaikan permukaan air di dalam pipa kapiler akan semakin tinggi.

Permukaan zat cair yang membasahi dinding, misalnya air, akan naik. Adapun yang tidak membasahi dinding, seperti raksa, akan turun.  Dalam kehidupan sehari-hari, contoh-contoh gejala kapiler adalah sebagai berikut. Minyak tanah naik melalui sumbu lampu minyak tanah atau sumbu kompor, dinding rumah basah pada musim hujan, air tanah naik melalui pembuluh kayu.

Peristiwa air membasahi dinding, atau raksa tidak membasahi dinding dapat dijelaskan dengan memperhatikan gaya tarik-menarik antarpartikel. Gaya tarik-menarik antarpartikel sejenis disebut kohesi, sedangkan gaya tarik-menarik antarpartikel tidak sejenis disebut adhesi. Air membasahi dinding kaca karena adanya gaya kohesi antarpartikel air yang lebih kecil daripada gaya adhesi antara partikel air dan partikel dinding kaca. Sedangkan, raksa memiliki gaya kohesi lebih besar daripada gaya adhesinya dengan dinding kaca sehingga  tidak membasahi dinding kaca. Gaya  adhesi  air  yang lebih besar dari kohesinya menyebabkan permukaan air berbentuk meniskus cekung, sedangkan gaya kohesi raksa lebih besar dari gaya adhesinya sehingga menyebabkan permukaan raksa berbentuk meniskus cembung.

Jika zat cair dimasukkan ke dalam suatu pipa kapiler, permukaan zat cair tersebut akan melengkung. Permukaan melengkung zat cair di dalam pipa disebut meniskus.



Gambar 7.23 memperlihatkan gaya tegangan permukaan cairan di dalam pipa kapiler. Bentuk permukaan cairan di dalam pipa kapiler bergantung pada sudut kontak (θ ) cairan tersebut. Permukaan cairan akan naik jika θ  < 90° dan turun jika θ  > 90°.

Naik atau turunnya permukaan zat cair dapat ditentukan dengan persamaan berikut.




Jika suatu zat cair membasahi dinding pipa, sudut kontaknya kurang dari 90° dan zat cair itu naik hingga mencapai tinggi kesetimbangan. Zat pencemar yang ditambahkan pada zat cair akan mengubah sudut kontak itu, misalnya detergent mengubah sudut kontak yang besarnya lebih dari 90° menjadi lebih kecil dari 90°. Sebaliknya, zat-zat yang membuat kain tahan air (waterproof) menyebabkan sudut kontak air dengan kain menjadi lebih besar dari 90°. Berikut beberapa nilai sudut kontak antara zat cair dan dinding pipa kapilernya.

detergent 
kain tahan air (waterproof)




Fluida Statis: Tegangan Permukaan

 Daftar Isi:

8. Tegangan Permukaan


Pernahkah Anda memerhatikan bentuk cairan obat yang keluar dari penetes obat atau bentuk raksa yang diteteskan di permukaan meja? Jika Anda perhatikan, tetesan cairan obat yang keluar dari alat penetesnya berbentuk bola-bola kecil. Demikian juga dengan bentuk air raksa yang diteteskan di permukaan meja.

Tetesan zat cair atau fluida cenderung untuk memperkecil luas permukaannya. Hal tersebut terjadi karena adanya tegangan permukaan. Apakah tegangan permukaan itu? Agar dapat memahami tentang tegangan permukaan zat cair, lakukanlah kegiatan Mahir Meneliti 7.2 berikut.



Contoh tegangan permukaan yang lain dapat Anda lihat jika Anda memasukkan sebuah gelang kawat yang dipasang benang ke dalam larutan sabun. Setelah dimasukkan ke dalam larutan sabun, pada gelang kawat akan terdapat selaput tipis. Jika bagian tengah jerat benang ditusuk hingga pecah akan terlihat jerat benang yang pada mulanya berbentuk tidak beraturan, berubah menjadi berbentuk lingkaran. 

Gelang kawat dan jerat benang yang dicelupkan ke dalam larutan sabun sebelum dan sesudah selaput tipis bagian tengahnya ditusuk terlihat seperti pada Gambar 7.20 berikut.


Gambar 7.20b menunjukkan bahwa permukaan zat cair dapat dianggap berada dalam keadaan tegang sehingga zat-zat pada kedua sisi garis saling tarik-menarik. 

Tegangan permukaan ( γ )  di  dalam  selaput  didefinisikan  sebagai  perbandingan antara gaya permukaan dan panjang permukaan yang tegak lurus gaya dan dipengaruhi oleh gaya tersebut.

Perhatikan  Gambar 7.21. Gambar tersebut menunjukkan percobaan sederhana untuk melakukan pengukuran kuantitatif tentang tegangan permukaan. Seutas kawat dilengkungkan membentuk huruf U dan kawat kedua berperan sebagai peluncur yang diletakkan di ujung kawat berbentuk U. Ketika rangkaian kedua kawat tersebut dimasukkan ke dalam larutan sabun, kemudian dikeluarkan. Akibatnya, pada rangkaian kawat terbentuk selaput tipis cairan sabun. Selaput tipis tersebut akan memberikan gaya tegangan permukaan yang menarik peluncur kawat ke bagian atas kawat U (jika berat peluncur kawat sangat kecil). Ketika Anda menarik peluncur kawat ke bawah, luas permukaan selaput tipis akan membesar dan molekul- molekulnya akan bergerak dari bagian dalam cairan ke dalam lapisan permukaan. 

Dalam keadaan setimbang, gaya tarik peluncur ke bawah sama dengan tegangan permukaan yang diberikan selaput tipis larutan sabun pada peluncur. Berdasarkan Gambar 7.21, gaya tarik peluncur ke bawah adalah

F = w + T

Jika   adalah panjang peluncur kawat maka gaya F bekerja pada panjang total 2   karena selaput tipis air sabun memiliki dua sisi permukaan. Dengan demikian, tegangan permukaan didefinisikan sebagai perbandingan antara gaya tegangan permukaan F dengan panjang d tempat gaya tersebut bekerja yang secara matematis dinyatakan dengan persamaan

Tegangan permukaan suatu zat cair yang bersentuhan dengan uapnya sendiri atau udara hanya bergantung pada sifat-sifat dan suhu zat cair itu. Berikut harga tegangan permukaan berdasarkan eksperimen. Berikut ini nilai tegangan permukaan beberapa zat cair berdasarkan hasil eksperimen.



Fluida Statis : Aplikasi Hukum Archimedes

 7. Aplikasi Hukum Archimedes

Hukum Archimedes banyak diterapkan dalam kehidupan sehari-hari, di antaranya pada hidrometer, kapal laut, kapal selam, balon udara, dan galangan kapal. Berikut ini prinsip kerja alat-alat tersebut.

a. Hidrometer


Hidrometer adalah alat yang digunakan untuk mengukur massa jenis zat cair. Proses pengukuran massa jenis zat cair menggunakan hidrometer dilakukan dengan cara memasukkan hidrometer ke dalam zat cair tersebut. Angka yang ditunjukkan oleh hidrometer telah dikalibrasi sehingga akan menunjukkan nilai massa jenis zat cair yang diukur. Berikut ini prinsip kerja hidrometer.



Oleh karena volume fluida yang dipindahkan oleh hidrometer sama dengan luas tangkai hidrometer dikalikan dengan tinggi yang tercelup maka dapat dituliskan



Hidrometer digunakan untuk memeriksa muatan akumulator mobil dengan cara membenamkan hidrometer ke dalam larutan asam akumulator. Massa jenis asam untuk muatan akumulator penuh kira-kira = 1,25 kg/m^3 dan mendekati 1 kg/m^3 untuk muatan akumulator kosong.

b. Kapal Laut dan Kapal Selam

Mengapa kapal yang terbuat dari baja dapat terapung di laut? Peristiwa ini berhubungan dengan gaya apung yang dihasilkan oleh kapal baja tersebut. Perhatikan Gambar 7.16 berikut.


Balok besi yang dicelupkan ke dalam air akan tenggelam, sedangkan balok besi yang sama jika dibentuk menyerupai perahu akan terapung. Hal ini disebabkan oleh jumlah fluida yang dipindahkan besi yang berbentuk perahu lebih besar daripada jumlah fluida yang dipindahkan balok besi. Besarnya gaya angkat yang dihasilkan perahu besi sebanding dengan volume perahu yang tercelup dan volume fluida yang dipindahkannya. Apabila gaya angkat yang dihasilkan sama besar dengan berat perahu maka perahu akan terapung. Oleh karena itu, kapal baja didesain cukup lebar agar dapat memin- dahkan volume fluida yang sama besar dengan berat kapal itu sendiri.


Tahukah Anda apa yang menyebabkan kapal selam dapat terapung, melayang, dan menyelam? Kapal selam memiliki tangki pemberat di dalam lambungnya yang berfungsi mengatur kapal selam agar dapat terapung, melayang, atau tenggelam. Untuk menyelam, kapal selam mengisi tangki pemberatnya dengan air sehingga berat kapal selam akan lebih besar daripada volume air yang dipindahkannya. Akibatnya, kapal selam akan tenggelam. Sebaliknya, jika tangki pemberat terisi penuh dengan udara (air laut dipompakan keluar dari tangki pemberat), berat kapal selam akan lebih kecil daripada volume kecil yang dipindahkannya sehingga kapal selam akan terapung. Agar dapat bergerak di bawah permukaan air laut dan melayang, jumlah air laut yang dimasukkan ke dalam tangki pemberat disesuaikan dengan jumlah air laut yang dipindahkannya pada kedalaman yang diinginkan.

c. Balon Udara


Balon berisi udara panas kali pertama diterbangkan pada tanggal 21 November 1783. Udara panas dalam balon memberikan gaya angkat karena udara panas di dalam balon lebih ringan daripada udara di luar balon. Balon udara bekerja berdasarkan prinsip Hukum Archimedes. Menurut prinsip ini, dapat dinyatakan bahwa sebuah benda yang dikelilingi udara akan mengalami gaya angkat yang besarnya sama dengan volume udara yang dipindahkan oleh benda tersebut.

Fluida Statis : Hukum Archimedes

Anda tentunya sering melihat kapal yang berlayar di laut, benda-benda yang terapung di permukaan air, atau batuan-batuan yang tenggelam di dasar sungai. Konsep terapung, melayang, atau tenggelamnya suatu benda di dalam fluida, kali pertama diteliti oleh Archimedes.

Menurut  Archimedes, benda yang dicelupkan sebagian atau seluruhnya ke dalam fluida, akan mengalami gaya ke atas. Besar gaya ke atas tersebut besarnya sama dengan berat fluida yang dipindahkan oleh benda. Secara matematis, Hukum Archimedes dituliskan sebagai berikut.


Berdasarkan Persamaan (7–9) dapat diketahui bahwa besarnya gaya ke atas yang dialami benda di dalam fluida bergantung pada massa jenis fluida, volume fluida yang dipindahkan, dan percepatan gravitasi Bumi.


Anda telah mengetahui bahwa suatu benda yang berada di dalam fluida dapat terapung, melayang, atau tenggelam. Agar Anda dapat mengingat kembali konsep Fisika dan persamaan yang digunakan untuk menyatakan ketiga perisiwa tersebut, pelajarilah uraian berikut.

a. Terapung


Benda yang dicelupkan ke dalam fluida akan terapung jika massa jenis benda lebih kecil daripada massa jenis fluida ( ρ b <  ρ f). Massa jenis benda yang terapung dalam fluida memenuhi persamaan berikut.



b. Melayang

Benda yang dicelupkan ke dalam fluida akan melayang jika massa jenis benda sama dengan massa jenis fluida ( ρ b=  ρ f). Dapatkah Anda memberikan contoh benda-benda yang melayang di dalam zat cair?

c. Tenggelam

Benda yang dicelupkan ke dalam fluida akan tenggelam jika massa jenis benda lebih besar daripada massa jenis fluida ( ρ b  >  ρ f).  Jika  benda  yang  dapat tenggelam dalam fluida ditimbang di dalam fluida tersebut, berat benda akan menjadi



Fluida Statis: Hukum Pascal

5. Hukum Pascal

Bagaimana jika sebuah bejana U diisi dengan fluida homogen dan salah satu pipanya ditekan dengan gaya sebesar F ? Proses Fisika yang terjadi pada bejana U seperti itu diselidiki oleh Blaise Pascal. Melalui penelitiannya, Pascal berkesimpulan bahwa apabila tekanan diberikan  pada fluida yang memenuhi sebuah ruangan tertutup, tekanan tersebut akan diteruskan oleh fluida tersebut ke segala arah dengan besar yang sama tanpa mengalami pengurangan. Pernyataan ini dikenal sebagai Hukum Pascal yang dikemukakan oleh Pascal pada 1653.


Secara analisis sederhana, Hukum Pascal dapat digambarkan seperti pada Gambar 7.9. Tekanan oleh gaya sebesar F1 terhadap pipa 1 yang memiliki luas penampang pipa A1, akan diteruskan oleh fluida menjadi gaya angkat sebesar F2 pada pipa 2 yang memiliki luas penampang pipa A2 dengan besar tekanan yang sama. Oleh karena itu, secara matematis Hukum Pascal ditulis sebagai berikut.




Hukum Pascal dimanfaatkan dalam peralatan teknik yang banyak membantu pekerjaan manusia, antara lain dongkrak hidrolik, pompa hidrolik, mesin hidrolik pengangkat mobil, mesin pres hidrolik, dan rem hidrolik. Berikut pembahasan mengenai cara kerja beberapa alat yang menggunakan prinsip Hukum Pascal.

a. Dongkrak Hidrolik

Dongkrak hidrolik merupakan salah satu aplikasi sederhana dari Hukum Pascal. Berikut ini prinsip kerja dongkrak hidrolik. Saat pengisap kecil diberi gaya tekan, gaya tersebut akan diteruskan oleh fluida (minyak) yang terdapat di dalam pompa. Akibatnya, minyak dalam dongkrak akan menghasilkan gaya angkat pada pengisap besar dan dapat mengangkat beban di atasnya.

b. Mesin Hidrolik Pengangkat Mobil

Mesin hidrolik pengangkat mobil ini memiliki prinsip yang sama dengan dongkrak hidrolik. Perbedaannya terletak pada perbandingan luas penampang pengisap yang digunakan. Pada mesin pengangkat mobil, perbandingan antara luas penampang kedua pengisap sangat besar sehingga gaya angkat yang dihasilkan pada pipa berpenampang besar dan dapat digunakan untuk mengangkat mobil.


c. Rem Hidrolik

Rem hidrolik digunakan pada mobil. Ketika Anda menekan pedal rem, gaya yang Anda berikan pada pedal akan diteruskan ke silinder utama yang berisi minyak rem. Selanjutnya, minyak rem tersebut akan menekan bantalan rem yang dihubungkan pada sebuah piringan logam sehingga timbul gesekan antara bantalan rem dengan piringan logam. Gaya gesek ini akhirnya akan menghentikan putaran roda.