Elastisitas dan Gerak Harmonik
Jika suatu benda bergerak bolak-balik terhadap titik tertentu, gerak benda itu disebut bergetar. Pada subbab ini Anda akan mempelajari jenis getaran yang dinamakan gerak harmonik sederhana. Contoh gerak seperti ini, antara lain gerak benda yang digantungkan pada suatu pegas dan gerak ayunan bandul yang amplitudonya kecil.
Pada gerak harmonik sederhana, benda akan selalu bergerak bolak-balik di sekitar titik kesetimbangannya secara terus-menerus. Dengan demikian, definisi gerak harmonik sederhana adalah gerak bolak-balik benda melalui suatu titik kesetimbangan tertentu dengan banyaknya getaran benda dalam setiap sekon selalu konstan.
1. Gaya Pemulih
Gaya pemulih dimiliki oleh setiap benda elastis yang terkena gaya sehingga benda elastis tersebut berubah bentuk. Gaya yang timbul pada benda elastis untuk menarik kembali benda yang melekat padanya disebut gaya pemulih. Akibat gaya pemulih tersebut, benda akan melakukan gerak harmonik sederhana. Dengan demikian, pada benda yang melakukan gerak harmonik sederhana bekerja gaya pemulih yang selalu mengarah pada titik kesetimbangan benda.
a. Gaya Pemulih pada Pegas
Pegas adalah salah satu contoh benda elastis. Oleh karena sifat elastisnya ini, suatu pegas yang diberi gaya tekan atau gaya regang akan kembali ke keadaan setimbangnya mula-mula apabila gaya yang bekerja padanya dihilangkan. Gaya yang timbul pada pegas untuk mengembalikan posisinya ke keadaan setimbang disebut gaya pemulih pada pegas.
Gaya pemulih pada pegas banyak dimanfaatkan dalam bidang teknik dan kehidupan sehari-hari. Misalnya, pada shockbreaker kendaraan dan spring- bed. Di dalam shockbreaker terdapat sebuah pegas yang berfungsi meredam getaran saat roda kendaraan melewati jalanan yang tidak rata. Dengan demikian, kendaraan dapat dikendarai dengan nyaman. Demikian juga dengan springbed. Pegas-pegas yang tersusun di dalam springbed akan memberikan kenyamanan saat Anda tidur di atasnya. Bagaimanakah sifat- sifat gaya pemulih pada pegas ini apabila diuraikan secara Fisika? Agar Anda dapat memahaminya, pelajarilah bahasan materi pada subbab ini.
1) Hukum HookeJika gaya yang bekerja pada sebuah pegas dihilangkan, pegas tersebut akan kembali ke keadaannya semula. Ilmuwan yang pertama-tama meneliti tentang ini adalah Robert Hooke. Melalui percobaannya, Hooke menyimpulkan bahwa sifat elastis pegas tersebut ada batasnya dan besar gaya pegas sebanding dengan pertambahan panjang pegas.
Anda dapat menyimpulkan bahwa suatu pegas apabila ditarik dengan gaya tertentu di daerah yang berada dalam batas kelentingannya akan bertambah panjang sebesar Δx. Dari hasil percobaan, juga didapatkan bahwa besar gaya pegas pemulih sebanding dengan pertambahan panjang pegas ( Δx). Secara matematis, pernyataan tersebut dapat dituliskan sebagai berikut.
dengan k = tetapan pegas (N/m).
Persamaan (3–6) ini dikenal sebagai Hukum Hooke. Tanda negatif (–) diberikan karena arah gaya pemulih pada pegas selalu berlawanan dengan arah gerak pegas tersebut. Perhatikanlah grafik hubungan antara F dan Δx pada Gambar 3.4. Dari titik O sampai dengan titik P, grafik F–Δx berbentuk garis lurus. Dalam batasan ini, pertambahan panjang pegas linear dan titik P disebut sebagai batas linearitas pegas. Dari titik P sampai dengan titik Q, pertambahan panjang pegas tidak linear sehingga F tidak sebanding dengan Δx. Namun sampai titik Q ini pegas masih bersifat elastis. Di atas batas elastis ini terdapat daerah tidak elastis (plastis). Pada daerah ini, pegas dapat putus atau tidak kembali ke bentuknya semula, walaupun gaya yang bekerja pada pegas itu dihilangkan. Hukum Hooke hanya berlaku sampai batas linearitas pegas.
Dari grafik F– Δx pada Gambar 3.4 juga dapat ditentukan tetapan pegas (k) pada batas linearitas pegas, yaitu
2) Susunan Pegas
Konstanta pegas dapat berubah nilainya, apabila pegas-pegas tersebut disusun menjadi rangkaian. Hal ini diperlukan, jika Anda ingin mendapatkan suatu nilai konstanta pegas untuk tujuan praktis tertentu, misalnya dalam merancang pegas yang digunakan sebagai shockbreaker. Besar konstanta total rangkaian pegas bergantung pada jenis rangkaian pegas, yaitu rangkaian pegas seri atau rangkaian pegas paralel.
a) Seri/Deret
Perhatikanlah Gambar 3.5. Gaya yang bekerja pada setiap pegas adalah sebesar F. Dengan demikian, setiap pegas akan mengalami pertambahan panjang sebesar Δx1 dan Δx2. Pertambahan panjang total kedua pegas adalah Δxtotal = Δx1 dan Δx2. Menurut Hukum Hooke, konstanta pegas total rangkaian pegas yang di susun seri tersebut adalah
Secara umum, konstanta total pegas yang disusun seri dinyatakan dengan persamaan
dengan kn = konstanta pegas ke-n.
b) Paralel
Gambar 3.6 menunjukkan dua pegas yang dirangkai secara paralel. Jika rangkaian pegas itu ditarik dengan gaya sebesar F, setiap pegas akan mengalami gaya tarik sebesar F1 dan F2, dengan Ftotal = F1 + F2. Setiap pegas juga akan mendapat pertambahan panjang sebesar Δx1 dan Δx2. Oleh karena Δx1 dan Δx2, konstanta pegas total untuk rangkaian pegas paralel menurut Hukum Hooke adalah
Secara umum, konstanta total pegas yang dirangkai paralel dinyatakan dengan persamaan
dengan kn = konstanta pegas ke-n.
Perhatikanlah ilustrasi gerakan pegas dan gaya pemulihnya yang diperlihatkan pada Gambar 3.7.
Gambar tersebut memperlihatkan suatu pegas yang konstanta pegasnya k dan panjangnya saat belum digantungi beban adalah l. Setelah benda bermassa m digantungkan pada pegas, seperti pada Gambar 3.7b, pegas bertambah panjang sebesar Δ l dan berada dalam keadaan setimbang. Gaya pemulih yang timbul pada pegas sama dengan berat benda, mg. Apabila pegas yang digantungi beban itu ditarik ke bawah dengan gaya sebesar F, pegas bertambah panjang sebesar Δl2, seperti terlihat pada Gambar 3.7c.
Pada saat ini, gaya pemulih pada pegas memenuhi hubungan sesuai Hukum Hooke F = –k Δ l dengan Δl = Δl2.
b. Gaya Pemulih pada Ayunan Matematis
Ayunan matematis atau ayunan sederhana merupakan suatu partikel massa yang tergantung pada suatu titik tetap pada seutas tali, di mana massa tali dapat diabaikan dan tali tidak dapat bertambah panjang. Contoh ayunan matematis ini adalah jam bandul.
Perhatikanlah Gambar 3.8. Sebuah beban bermassa m tergantung pada seutas kawat halus kaku sepanjang dan massanya dapat diabaikan. Apabila bandul itu bergerak vertikal dengan membentuk sudut θ , seperti terlihat pada Gambar 3.8b, gaya pemulih bandul tersebut ialah mg sin θ . Secara matematis dapat dituliskan
2. Persamaan Gerak Harmonik Sederhana
a. Persamaan Simpangan Gerak Harmonik Sederhana
Persamaan gerak harmonik sederhana didapatkan dari proyeksi gerak melingkar beraturan pada sumbu-x atau sumbu-y. Perhatikanlah Gambar 3.9 yang memperlihatkan sebuah kereta mainan sedang bergerak melingkar di jalurnya. Dalam hal ini, kereta mainan tersebut bergerak melingkar beraturan dan bayangan kereta mainan yang terbentuk akibat cahaya lampu yang diarahkan padanya akan bergerak bolak-balik.
Perhatikanlah Gambar 3.10. Apabila kereta mainanitu diumpamakan sebagai titik P yang bergerak melingkar beraturan dengan kecepatan tetap v0 dan jari-jari lingkaran R = x0, titik P tersebut akan bergerak bolak- balik di antara + x0 dan – x0.
Posisi titik P menurut sumbu- x dinyatakan sebagai
Anda telah mempelajari bahwa periode (T) adalah waktu yang dibutuhkan untuk melakukan satu putaran penuh. Oleh karena θ = 2π maka waktu yang dibutuhkan oleh titik P untuk bergerak dari titik +x0 hingga ke posisinya digambar adalah
Dengan demikian, hubungan antara sudut dan waktu dapat juga dituliskan sebagai
Apabila
Persamaan (3–15) disubstitusikan ke
Persamaan (3–14) didapatkan
Anda telah mengetahui bahwa frekuensi berbanding terbalik dengan
Persamaan-persamaan yang telah diuraikan, yaitu Persamaan (3–13) sampai Persamaan (3–18) menyatakan gerak melingkar benda yang diproyeksikan terhadap sumbu-x. Apabila gerak melingkar benda diproyeksikan menurut sumbu-y, persamaan posisi benda dinyatakan sebagai y = y0 sin θ sehingga diperoleh persamaan simpangan gerak harmonik sederhana
Gambar 3.11 memperlihatkan hubungan antara simpangan (y) terhadap waktu (t) dari persamaan simpangan y = A sin ω t. Dari grafik tersebut dapat diketahui bahwa nilai simpangan (ymaks) = A, yaitu amplitudo simpangan tersebut.
b. Persamaan Kecepatan Gerak Harmonik
Anda telah mempelajari bahwa kecepatan adalah adalah turunan pertama dari fungsi posisi. Hal ini juga dalam gerak harmonik. Kecepatan gerak harmonik. Secara matematis, dituliskan sebagai berikut.
Apabila persamaan simpangan gerak harmonik dinyatakan dalam arah sumbu-x, persamaan kecepatan gerak harmoniknya adalah
Nilai kecepatan maksimum untuk Persamaan (3–20) dan (3–21) diperoleh saat nilai cos ω t atau sin ω t = 1 sehingga didapatkan nilai kecepatan maksimum gerak harmonik adalah
c. Persamaan Percepatan Gerak Harmonik
Persamaan percepatan gerak harmonik dapat ditentukan dari turunan pertama persamaan kecepatan gerak harmonik terhadap waktu. Secara matematis, penulisannya adalah sebagai berikut.
Oleh karena A sin ω t = y, persamaan percepatan gerak harmonik dapat dituliskan menjadi
Nilai percepatan maksimum untuk Persamaan (3–24) diperoleh saat sin ω t = 1 sehingga nilai percepatan maksimum gerak harmonik dinyatakan sebagai
Tanda negatif (–) pada persamaan percepatan gerak harmonik menunjukkan bahwa arah percepatan gerak selalu menuju ke titik kesetim- bangannya, yaitu y = 0.
3. Fase dan Sudut Fase Gerak Harmonik Sederhana
Pada persamaan gerak harmonik sederhana dikenal beberapa istilah, seperti fase dan sudut fase. Secara fisis, fase adalah kedudukan suatu benda dilihat dari arah getar dan simpangannya pada suatu saat tertentu. Secara matematis, pernyataan ini dituliskan
Perhatikanlah Gambar 3.12. Titik A dan titik E serta titik B dan titik F dikatakan memiliki fase yang sama karena simpangannya sama dan arah getarnya sama. Syarat agar dua titik memiliki fase yang sama adalah:
Titik A dan titik C, titik B dan titik D dikatakan berlawanan fase karena arah getarnya berlawanan. Syarat agar dua titik memiliki fase yang berlawanan adalah
Apabila fase dan sudut fase getaran gerak harmonik diperhitungkan, akan didapatkan sebuah persamaan umum gerak harmonik sederhana yang dituliskan sebagai berikut.
dengan θ
0 = sudut fase awal getaraan (rad).
Oleh karena itu, dari Persamaan (3–28) dapat dinyatakan sudut fase
4. Periode dan Frekuensi Gerak Harmonik Sederhana
Setiap benda yang melakukan gerak harmonik sederhana memiliki besaran periode dan frekuensi. Berikut akan dibahas periode dan frekuensi pada getaran pegas dan ayunan sederhana.
a. Periode dan Frekuensi pada Getaran Pegas
Perhatikanlah Gambar 3.13. Periode (T) adalah waktu yang dibutuhkan pegas untuk melakukan satu kali gerak bolak-balik dari O – A – O – B – O, sedangkan frekuensi ( f ) adalah kebalikan dari periode.
Periode dan frekuensi getaran pegas diperoleh dari persamaan gaya pemulih dan Hukum Kedua Newton tentang gerak, yaitu
F = –ky = ma
b. Periode dan Frekuensi pada Ayunan Sederhana
Periode ayunan adalah waktu yang dibutuhkan ayunan itu untuk melakukan satu kali gerak bolak-balik dari titik P – O – Q – O – P, seperti terlihat pada Gambar 3.14.
Sama halnya dengan getaran pada pegas, periode dan frekuensi pada ayunan sederhana diperoleh dari persamaan gaya pemulih dan Hukum Kedua Newton, yaitu
sehingga diperoleh persamaan periode dan frekuensi pada ayunan sederhana sebagai berikut.