Informasi Sekolah Kedinasan

Informasi lengkap, klik logo sekolah kedinasan!


Tampilkan postingan dengan label Elektrodinamika. Tampilkan semua postingan
Tampilkan postingan dengan label Elektrodinamika. Tampilkan semua postingan

Senin, 08 Agustus 2022

Pembahasan Soal Hukum 2 Kirchhoff 2 Loop: Bagaimana sebaiknya arah loop?


Problem Set 1: Tentukan besar arus listrik pada masing-masing hambatan listrik!



 Problem Set 2: Tentukan besar arus listrik pada masing-masing hambatan listrik!


Video Pembahasan Soal:


Video lainnya berkaitan dengan Hukum Ohm dan Hukum Kirchhoff:


Senin, 01 Agustus 2022

Hukum-Hukum Kirchhoff dan Penerapannya

a. Hukum Arus Kirchhoff

Hukum Arus Kirchhoff membicarakan arus listrik pada titik percabangan kawat. Tinjau sebuah titik percabangan kawat, sebut titik A,  seperti yang diperlihatkan pada Gambar 8.10


Arus I1 dan I2 menuju (masuk ke) titik A, sedangkan  I3  dan  I4  menjauhi  (keluar  dari)  titik  A.  Jika  aliran  arus dianalogikan sebagai aliran air dalam pipa, Anda tentu akan yakin bahwa jumlah aliran air sebelum melewati titik A akan sama dengan jumlah air sesudah melewati titik A. Demikian pula dengan arus listrik, jumlah arus listrik yang menuju (masuk ke) titik percabangan (titik A) sama dengan jumlah arus yang menjauhi (keluar dari) titik percabangan tersebut. Dengan demikian, pada Gambar 8.10, secara matematis diperoleh


yang berarti bahwa jumlah arus listrik pada suatu titik percabangan sama dengan nol. Persamaan (8–10) disebut Hukum Pertama Kirchhoff atau Hukum Arus Kirchhoff. Perlu diingat bahwa ketika Anda menggunakan Persamaan (8–10), arus yang masuk ke titik percabangan diberi tanda positif, sedangkan arus yang keluar dari titik percabangan diberi tanda negatif.

b. Hukum Tegangan Kirchhoff

Hukum Tegangan Kirchhoff didasarkan pada Hukum Kekekalan Energi. Ketika muatan listrik q berpindah dari potensial tinggi ke potensial rendah dengan beda potensial V, energi muatan itu akan turun sebesar qV. Sekarang tinjau rangkaian listrik, seperti diperlihatkan pada Gambar 8.11.


Baterai dengan tegangan terminal V akan melepas muatan q dengan energi qV sedemikian sehingga mampu bergerak pada lintasan tertutup (loop)  abcda. Ketika muatan q melintasi resistansi R1, energi muatan ini akan turun sebesar qV1. Demikian pula ketika melintasi R2 dan R3, masing-masing energinya turun sebesar qV2 dan qV3. Total penurunan energi muatan adalah qV1 + qV2 + qV3.

Sesuai dengan Hukum Kekekalan Energi, penurunan ini harus sama dengan energi yang dilepaskan oleh baterai, qV. Dengan demikian berlaku


yang berarti bahwa jumlah tegangan pada sebuah loop (lintasan tertutup) sama dengan nol. Persamaan (8–11) disebut Hukum Kedua Kirchhoff atau Hukum Tegangan Kirchhoff.

c. Penerapan Hukum Kirchhoff pada Rangkaian Sederhana

Rangkaian sederhana adalah rangkaian yang terdiri dari satu loop. Sebagai contoh, tinjau rangkaian pada Gambar 8.12. 

Tidak ada titik percabangan di sini sehingga arus pada setiap hambatan sama, yakni I dengan arah seperti pada gambar. Pilih loop a-b-c-d-a. Ketika Anda bergerak dari a ke b, Anda menemui kutub negatif baterai terlebih dahulu sehingga GGLnya ditulis Vab =  E1. Ketika Anda melanjutkan gerakan dari b ke c, Anda mendapati arah arus sama dengan arah gerakan Anda sehingga tegangan pada R1 diberi tanda positif, yakni Vbc = +IR1. Dari c ke d kembali Anda menemui GGL dan kali ini kutub positifnya terlebih dahulu sehingga diperoleh Vcd  =  +E2. Selanjutnya, tegangan antara d  dan  a  diperoleh  Vda  =  +IR2.  Hasil  tersebut kemudian dimasukkan ke dalam Persamaan (8–11).



Dengan demikian, untuk rangkaian listrik sederhana, besarnya arus listrik yang mengalir pada rangkaian dapat dicari menggunakan Persamaan (8–12). Akan tetapi, jangan lupa ketika memasukkan nilai GGLnya, Anda harus tetap memerhatikan tanda GGL tersebut.


d. Penerapan Hukum-hukum Kirchhoff pada Rangkaian Majemuk


Rangkaian majemuk adalah rangkaian arus searah yang lebih dari satu loop. Salah satu cara untuk menganalisis rangkaian majemuk adalah analisis loop. Analisis ini pada dasarnya menerapkan Hukum-hukum Kirchhoff, baik tentang arus maupun tegangan. Berikut adalah langkah- langkah untuk menganalisis rangkaian majemuk pada Gambar 8.13 menggunakan analisis loop.


  1. Tandai titik-titik sudut atau titik cabang rangkaian, misalnya titik a, b, c, d, e, dan f.
  2. Tentukan arah arus pada tiap cabang, sebarang saja, sesuai keinginan Anda. Lalu, gunakan Persamaan (8–10) untuk mendapatkan persamaan arusnya.
  3. Tentukan titik tempat Anda mulai bergerak dan lintasan yang akan Anda lalui. Misalnya, Anda ingin memulai dari titik a menuju titik b, c, dan d lalu ke a lagi  maka yang dimaksud satu loop adalah lintasan a-b-c-d-a. Lakukan hal yang serupa untuk loop c-d-e-f-c. 
  4. Jika Anda melewati sebuah baterai dengan kutub positif terlebih dahulu, GGL E diberi tanda positif (+E). Sebaliknya, jika kutub negatif lebih dulu, GGL E diberi tanda negatif ( E). 
  5. Jika Anda melewati sebuah hambatan R dengan arus I searah loop Anda, tegangannya diberi tanda positif (+IR). Sebaliknya, jika arah arus I berlawanan dengan arah loop Anda, tegangannya diberi tanda negatif (IR).
  6. Masukkan hasil pada langkah 3 ke Persamaan (8–11).
  7. Dari beberapa persamaan yang Anda dapatkan, Anda dapat melakukan eliminasi untuk memperoleh nilai arus pada tiap cabang.



e. Penerapan Hukum Arus Kirchhoff dan Hukum Ohm pada Rangkaian Majemuk

Selain analisis loop, analisis simpul juga dapat digunakan untuk menganalisis rangkaian majemuk. Analisis ini menerapkan Hukum Arus Kirchhoff dan Hukum Ohm. Berikut adalah langkah-langkah untuk menerapkan analisis simpul pada rangkaian majemuk yang diperlihatkan pada Gambar 8.14.

1)Pilih salah satu titik (simpul), misal A, sebagai acuan dengan tegangan nol (ground) dan titik (simpul) lainnya, misal B, anggap memiliki tegangan V terhadap ground, yakni VBA = V. 
2) Pilih semua arus pada tiap cabang, yakni I1, I2, dan I3, berarah dari B ke A. 3) Jika pada cabang arus terdapat baterai (GGL), perhatikan kutub baterai yang ditemui arah arus. Jika arus yang Anda misalkan masuk ke kutub positif baterai, arus pada cabang tersebut memenuhi persamaan

4) Terapkan Hukum Arus Kirchhoff sebagai berikut. 


5)
 Masukkan I pada langkah 3 ke langkah 4 maka Anda akan memperoleh nilai V.

6) Untuk mendapatkan arus pada tiap cabang, Anda tinggal memasukkan nilai V hasil langkah 5 ke persamaan I pada langkah 3.





Jumat, 08 Juli 2022

Menghitung Biaya Sewa Energi Listrik

Listrik Arus Searah (DC)

Di Indonesia, energi listrik dikelola oleh sebuah BUMN (Badan Usaha Milik Negara), yakni PT. PLN (Perusahaan Listrik Negara). Masyarakat Indonesia, termasuk Anda tentunya, menggunakan energi listrik dari PT. PLN dengan menyewanya. Anda harus membayar biaya sewa energi listrik, atau lebih dikenal dengan sebutan rekening listrik, tiap bulan.

Bagaimana biaya sewa energi listrik dihitung? Biaya sewa energi listrik dihitung berdasarkan jumlah energi listrik yang digunakan dalam satuan kWh. Energi listrik itu sendiri dihitung berdasarkan persamaan W  =  Pt, dengan  P  dalam satuan watt dan t  dalam satuan jam. Biaya sewa sama dengan jumlah energi listrik dalam kWh dikalikan dengan tarif 1 kWh. Sebagai contoh, jika tarif 1 kWh adalah Rp.150 dan total energi listrik yang digunakan dalam sebulan adalah 1200 kWh, biaya sewanya adalah 1.200 kWh × Rp.150/kWh = Rp.180.000.

Alat yang digunakan untuk mengukur energi dalam satuan kWh disebut kWh meter. Di rumah-rumah yang menyewa listrik, kWh meter umumnya dipasang pada dinding bagian depan rumah, dekat pintu masuk. Bentuk kWh meter seperti diperlihatkan pada Gambar 8.21.



Pemanfaatan Energi Listrik dalam Kehidupan Sehari-Hari

Listrik Arus Searah (DC)

Energi listrik merupakan energi yang paling mudah untuk diubah menjadi energi lain. Oleh karena itu, energi ini paling banyak digunakan oleh manusia. Untuk keperluan rumah tangga, misalnya, dari mulai penerangan, memasak, menyeterika, dan mencuci menggunakan peralatan yang bersumber dari energi listrik. Untuk penerangan, misalnya, orang menggunakan lampu listrik. Untuk memasak, ibu-ibu akan merasa lebih praktis jika menggunakan penanak nasi elektrik (rice cooker) atau kompor listrik. Untuk menyetrika pakaian, digunakan setrika listrik. Untuk mencuci pakaian, digunakan mesin cuci.

Selain itu, untuk menyimpan daging, sayuran mentah, atau bahan makananlain agar tahan lama, digunakan kulkas. Untuk mendapatkan air dingin, hangat, atau panas, digunakan dispenser. Untuk keperluan hiburan dan informasi, digunakan radio, televisi, atau tape recorder yang tentu saja dinyalakan menggunakan energi listrik. Apakah telepon rumah atau telepon genggam (handphone) Andamenggunakan energi listrik?

Untuk menghasilkan suatu produk, pabrik-pabrik garmen banyak menggunakan energi listrik untuk menggerakkan mesin-mesin produksi. Untuk administrasi perkantoran, seperti komputer merupakan bagian yang tak terpisahkan sehingga energi listrik diperlukan di sini. Demikian pula di pusat-pusat bisnis lainnya, bahkan di sekolah Anda sekalipun. Pada intinya, banyak sekali di sekitar Anda peralatan-peralatan yang menggunakan energi listrik, baik yang berasal dari sumber DC maupun AC.

Di Indonesia, khususnya, masih banyak daerah-daerah yang belum tersentuh pemanfaatan energi listrik, terutama untuk penerangan. Oleh karena itu, ke depan, perlu dipikirkan sumber-sumber pembangkit energi listrik. Dewasa ini, sumber pembangkit energi listrik di Indonesia umumnya berasal dari bahan bakar minyak (BBM). BBM ini merupakan bahan bakar utama mesin pengerak generator. Selain BBM, sumber energi listrik lainnya dibangkitkan oleh air, yakni Pembangkit Listrik Tenaga Air (PLTA). Sebenarnya masih banyak potensi kekayaan alam Indonesia untuk dijadikan sumber energi listrik. Energi panas bumi, energi matahari, bahkan energi nuklir merupakan potensi yang perlu dikembangkan sebagai pembangkit energi listrik.

Energi listrik merupakan energi yang paling mudah untuk diubah menjadi energi lain. Oleh karena itu, energi ini paling banyak digunakan oleh manusia. Untuk keperluan rumah tangga, misalnya, dari mulai penerangan, memasak, menyeterika, dan mencuci menggunakan peralatan yang bersumber dari energi listrik. Untuk penerangan, misalnya, orang menggunakan lampu listrik. Untuk memasak, ibu-ibu akan merasa lebih praktis jika menggunakan penanak nasi elektrik (rice cooker) atau kompor listrik. Untuk menyetrika pakaian, digunakan setrika listrik. Untuk mencuci pakaian, digunakan mesin cuci.

Selain itu, untuk menyimpan daging, sayuran mentah, atau bahan makananlain agar tahan lama, digunakan kulkas. Untuk mendapatkan air dingin, hangat, atau panas, digunakan dispenser. Untuk keperluan hiburan dan informasi, digunakan radio, televisi, atau tape recorder yang tentu saja dinyalakan menggunakan energi listrik. Apakah telepon rumah atau telepon genggam (handphone) Andamenggunakan energi listrik?

Untuk menghasilkan suatu produk, pabrik-pabrik garmen banyak menggunakan energi listrik untuk menggerakkan mesin-mesin produksi. Untuk administrasi perkantoran, seperti komputer merupakan bagian yang tak terpisahkan sehingga energi listrik diperlukan di sini. Demikian pula di pusat-pusat bisnis lainnya, bahkan di sekolah Anda sekalipun. Pada intinya, banyak sekali di sekitar Anda peralatan-peralatan yang menggunakan energi listrik, baik yang berasal dari sumber DC maupun AC.

Di Indonesia, khususnya, masih banyak daerah-daerah yang belum tersentuh pemanfaatan energi listrik, terutama untuk penerangan. Oleh karena itu, ke depan, perlu dipikirkan sumber-sumber pembangkit energi listrik. Dewasa ini, sumber pembangkit energi listrik di Indonesia umumnya berasal dari bahan bakar minyak (BBM). BBM ini merupakan bahan bakar utama mesin pengerak generator. Selain BBM, sumber energi listrik lainnya dibangkitkan oleh air, yakni Pembangkit Listrik Tenaga Air (PLTA). Sebenarnya masih banyak potensi kekayaan alam Indonesia untuk dijadikan sumber energi listrik. Energi panas bumi, energi matahari, bahkan energi nuklir merupakan potensi yang perlu dikembangkan sebagai pembangkit energi listrik.


Alat Ukur Listrik

Listrik Arus Searah (DC)

1. Voltmeter

Voltmeter adalah alat untuk mengukur tegangan antara dua titik. Ketika digunakan, voltmeter harus dipasang paralel dengan komponen yang hendak diukur tegangannya, seperti diperlihatkan pada Gambar 8.16.


Untuk mendapatkan hasil pengukuran yang akurat, hambatan dalam voltmeter harus jauh lebih besar daripada hambatan komponen yang diukur. Voltmeter ideal adalah voltmeter yang hambatan dalamnya bernilai takhingga. Mengapa demikian? Untuk menjawab pertanyaan ini, perhatikan Gambar 8.16. Arus yang mengalir pada hambatan R sebelum dipasang voltmeter adalah I, seperti diperlihatkan pada Gambar 8.16(a). Ketika voltmeter dipasang paralel dengan R, arus I menjadi terbagi dua, I1 mengalir pada R dan sisanya, I2 mengalir melalui voltmeter yang berhambatan dalam RV, seperti diperlihatkan pada Gambar 8.16(b). Hal ini menunjukkan bahwa tegangan pada R sebelum dan sesudah voltmeter digunakan akan berbeda. Oleh karena tegangan pada setiap hambatan yang dirangkai paralel besarnya sama, dari Gambar 8.16(b) diperoleh



Voltmeter memiliki batas ukur tertentu, yakni nilai tegangan maksimum yang dapat diukur oleh voltmeter tersebut. Jika tegangan yang diukur oleh voltmeter melebihi batas ukurnya, voltmeter akan rusak. Lalu, apa yang dapat Anda lakukan jika tegangan yang akan diukur melebihi batas ukur voltmeter?

Anda dapat menaikkan batas ukur voltmeter dengan prinsip yang sederhana. Misalnya, menurut  hasil perhitungan matematis Anda, tegangan pada sebuah hambatan adalah 100 V. Di lain pihak, untuk menguji hasil perhitungan Anda, Anda akan menggunakan voltmeter yang ternyata hanya mampu mengukur sampai maksimum 10 V. Hal yang dapat Anda lakukan adalah membagi tegangan 100 V tersebut sedemikian sehingga yang melintasi voltmeter tetap 10 V supaya voltmeter tidak rusak. Sisa tegangannya, yakni 90 V, yang diberikan pada hambatan Rd  yang  harus  dipasang  seri  dengan voltmeter. Mengapa harus dipasang seri? Ingat, hambatan yang dirangkai seri berfungsi untuk membagi tegangan. Pertanyaan selanjutnya adalah, berapakah nilai Rd yang harus Anda pasang?

Untuk menjawab pertanyaan terakhir, perhatikan Gambar 8.17. 


Agar lebih umum, misalnya tegangan yang akan diukur adalah V = nVm, dengan n bilangan bulat positif dan Vm adalah batas ukur voltmeter. Karena voltmeter yang dirangkai seri dengan Rd tersusun paralel dengan hambatan yang diukur tegangannya maka berlaku


2. Amperemeter

Amperemeter disingkat ammeter adalah alat yang digunakan untuk mengukur arus listrik. Ketika digunakan, ammeter harus dirangkai seri dengan yang diukur, seperti diperlihatkan pada Gambar 8.18.



Berbeda dengan voltmeter, untuk mendapatkan hasil pengukuran yang akurat, hambatan dalam ammeter harus jauh lebih kecil daripada hambatan yang diukur arusnya. Seperti yang dapat Anda lihat pada Gambar 8.18, jika sebelum dipasang ammeter, arus yang melalui R adalah I, maka setelah R diserikan dengan Ra,  arus  yang  melalui  R  akan  turun  menjadi  I'.  Hal  ini terjadi karena hambatannya bertambah besar menjadi R + Ra,  sedangkan tegangannya tetap. Oleh karena tegangan sebelum dan sesudah dipasang voltmeter tetap, maka berlaku



Seperti halnya pada voltmeter, batas ukur ammeter juga dapat ditingkatkan.  Misalnya, Anda akan mengukur arus listrik yang besarnya nIm,  dengan  n  bilangan  bulat  positif  dan  Im  adalah  batas  ukur  ammeter. Dalam hal ini Anda harus memasang hambatan paralel, Rsh,  (disebut hambatan shunt) dengan ammeter seperti diperlihatkan pada Gambar 8.19.


Hal ini dilakukan agar arus yang besarnya nIm tadi terbagi menjadi Im pada ammeter dan (n–1) Im pada hambatan Rsh. Oleh karena Rsh paralel dengan Ra, tegangan pada keduanya sama sehingga berlaku