Informasi Sekolah Kedinasan

Informasi lengkap, klik logo sekolah kedinasan!


Tampilkan postingan dengan label Hukum-hukum Gravitasi. Tampilkan semua postingan
Tampilkan postingan dengan label Hukum-hukum Gravitasi. Tampilkan semua postingan

Jumat, 15 Juli 2022

Gaya Gravitasi

 Hukum-hukum Gravitasi

1. Hukum Gravitasi Newton

Gejala munculnya interaksi yang berupa gaya tarik-menarik antarbenda yang ada di alam ini disebut gaya gravitasi. Setiap benda di alam ini mengalami gaya gravitasi. Jika Anda sedang duduk di kursi, sedang berjalan, atau sedang melakukan kegiatan apapun, terdapat gaya gravitasi yang bekerja pada Anda. Gaya gravitasi merupakan gaya interaksi antarbenda. Pernahkah Anda bertanya kenapa gaya gravitasi yang Anda alami tidak menyebabkan benda-benda yang terdapat di sekitar Anda tertarik ke arah Anda, atau sebaliknya? Di alam semesta, gaya gravitasi menyebabkan planet- planet, satelit-satelit, dan benda-benda langit lainnya bergerak mengelilingi Matahari dalam sistem tata surya dalam lintasan yang tetap.















Isaac Newton adalah orang pertama yang mengemukakan gagasan tentang adanya gaya gravitasi. Menurut cerita, gagasan tentang gaya gravitasi ini diawali dari pengamatan Newton pada peristiwa jatuhnya buah apel dari pohonnya. Kemudian, melalui penelitian lebih lanjut mengenai gerak jatuhnya benda-benda, ia menyimpulkan bahwa apel dan setiap benda jatuh karena tarikan Bumi.


Menurut Newton, gaya gravitasi antara dua benda merupakan gaya tarik-menarik yang berbanding lurus dengan massa setiap benda dan berbanding terbalik dengan kuadrat jarak antara benda tersebut. Secara matematis, pernyataan mengenai gaya gravitasi tersebut dituliskan sebagai berikut.































































Sekarang akan ditunjukkan  bahwa Hukum Gravitasi Newton menunjuk pada Hukum Ketiga Kepler untuk kasus khusus orbit lingkaran. Sebuah planet yang bergerak mengelilingi Matahari dengan kelajuan dalam orbit berjari-jari lingkaran mendapat gaya tarik dari Matahari yang arahnya ke pusat lingkaran sehingga planet tersebut memiliki percepatan sentripetal.

Sesuai dengan Hukum Kedua Newton tentang gerak, didapatkan persamaan berikut.



Untuk orbit berbentuk elips, variabel jari-jari diganti dengan jarak rata- rata antara planet dan Matahari.

2. Medan Gravitasi


Medan gravitasi adalah ruang yang masih dipengaruhi oleh gaya gravitasi. Besar medan gravitasi sama dengan gaya gravitasi setiap satuan massa. Secara matematis dituliskan sebagai berikut.


Dengan mengganti nilai F pada Persamaan (2–4) dengan persamaan gaya tarik gravitasi Persamaan (2–2), akan diperoleh


Kuat medan gravitasi g sering disebut percepatan gravitasi dan merupakan besaran vektor. Apabila medan gravitasi tersebut ditimbulkan oleh lebih dari satu benda, kuat medan yang ditimbulkan oleh gaya-gaya tersebut pada suatu titik harus ditentukan dengan cara menjumlahkan vektor- vektor kuat medannya.




























Percepatan gravitasi di permukaan Bumi (jari-jari bumi = R) berbeda dengan percepatan gravitasi pada ketinggian tertentu (h) di atas permukaan Bumi. Jika percepatan gravitasi di permukaan Bumi g dan percepatan gravitasi pada ketinggian h di atas permukaan bumi ga  ,  maka  hubungannya  dapat ditentukan dari persamaan :


sehingga menghasilkan persamaan :























































3. Kecepatan Satelit Mengelilingi Bumi

Sebuah satelit berada pada ketinggian h di atas permukaan Bumi yang memiliki jari-jari R. Satelit tersebut bergerak mengelilingi Bumi dengan kecepatan v. Satelit mendapatkan gaya gravitasi sebesar mga yang arahnya menuju pusat Bumi, ketika satelit bergerak melingkar mengitari Bumi. Gaya yang bekerja pada sebuah benda yang sedang bergerak melingkar dan arah- nya menuju pusat lingkaran disebut gaya sentripetal. Melalui penurunan persamaan gerak melingkar, diperoleh persamaan berikut.


Kecepatan satelit mengelilingi Bumi dapat dituliskan dengan persamaan:




Substitusikan besar g dari Persamaan (2–5) sehingga dihasilkan 


Dengan demikian, kecepatan satelit saat mengelilingi Bumi dapat dituliskan dalam bentuk persamaan:





























4. Pengukuran Konstanta Gravitasi Universal

Nilai tetapan semesta G yang sebelumnya tidak dapat ditentukan oleh Newton, ditentukan melalui percobaan yang dilakukan oleh seorang ilmuwan Inggris bernama Henry Cavendish pada 1798 dengan ketelitian sebesar 99%. Percobaan yang dilakukan Cavendish menggunakan sebuah neraca yang disebut Neraca Cavendish. Neraca tersebut dapat mengukur besar gaya putar yang diadakan pada lengan gayanya. Gambar berikut adalah sketsa dari peralatan Cavendish yang digunakan untuk mengukur gaya gravitasi antara dua benda kecil.




Untuk memahami prinsip kerja lengan gaya yang terdapat pada Neraca Cavendish, perhatikanlah Gambar 2.9 berikut .


Dua bola kecil, masing-masing dengan massa m1, diletakkan di ujung batang ringan yang digantungkan pada seutas tali halus. Di samping bola-bola kecil tersebut, digantungkan bola-bola besar dengan massa m2. Apabila tali penggantung massa m1 dipuntir dengan sudut sebesar θ  dan besar m2, m1,  serta  jarak  antara  kedua  massa  itu  (d )  diketahui,  besarnya  G  dapat dihitung. Beberapa metode dan alat ukur telah dikembangkan oleh para ilmuwan untuk mendapatkan nilai konstanta gravitasi yang lebih akurat. Walaupun G adalah suatu konstanta Fisika pertama yang pernah diukur, konstanta G tetap merupakan konstanta yang dikenal paling rendah tingkat ketelitiannya. Hal ini disebabkan tarikan gravitasi yang sangat lemah sehingga dibutuhkan alat ukur yang sangat peka agar dapat mengukur nilai G dengan teliti. Hingga saat ini , nilai konstanta gravitasi universal G yang didapatkan oleh Cavendish, yaitu (6,70 ±0,48)× 10-11 Nm ^ 2/kg ^ 2 tidak jauh berbeda dengan nilai G yang didapat oleh para ilmuwan modern, yaitu 6,673 × 10-11 Nm ^ 2/kg ^ 2.

Tabel 2.1 berikut memperlihatkan nilai konstanta gravitasi universal G yang dihasilkan oleh beberapa ilmuwan serta metode yang digunakannya.


























5. Energi Potensial Gravitasi
















































6. Kecepatan Lepas dari Bumi

Apakah mungkin sebuah benda yang digerakkan atau ditembakkan vertikal ke atas tidak kembali ke Bumi? Jika mungkin terjadi, berapa kecepatan minimum benda tersebut saat di tembakkan agar terlepas dari pengaruh gravitasi Bumi? Untuk menjawab pertanyaan tersebut, perhatikanlah gambar sebuah roket yang sedang lepas landas pada Gambar 2.11 berikut.


Jika resultan gaya luar yang bekerja pada benda sama dengan nol, energi mekanik benda kekal. Secara matematis, Hukum Kekekalan Energi Mekanik dirumuskan


Agar roket lepas dari pengaruh gravitasi Bumi maka EP2 = 0, sedangkan kecepatan minimum roket diperoleh jika EK2  =  0.  Dengan  demikian,  akan dihasilkan persamaan:


























































Hukum-Hukum Kepler

Hukum-hukum Gravitasi


Ilmu perbintangan atau astronomi telah dikenal oleh manusia sejak beribu-ribu tahun yang lalu. Sejak dahulu, gerakan bintang-bintang dan planet yang terlihat bergerak relatif terhadap Bumi telah menarik perhatian para ahli astronomi sehingga planet-planet dan bintang-bintang tersebut dijadikan sebagai objek penyelidikan. Hasil penyelidikan mereka mengenai pergerakan planet-planet dan bintang tersebut, kemudian dipetakan ke dalam suatu bentuk model alam semesta. Dalam perkembangannya, beberapa model alam semesta telah dikenalkan oleh para ahli astronomi.

Sebuah model alam semesta yang dikenalkan oleh Ptolomeus sekitar 140 Masehi, menyatakan bahwa Bumi berada di pusat alam semesta. Matahari dan bintang-bintang bergerak mengelilingi Bumi dalam lintasan lingkaran besar yang terdiri atas lingkaran-lingkaran kecil (epicycle). Model alam semesta Ptolomeus ini berdasarkan pada pengamatan langsung gerakan relatif bintang dan planet-planet yang teramati dari Bumi. Model alam semesta Ptolomeus ini disebut juga model geosentris.


Pada 1543 Masehi, Copernicus mengenalkan model alam semesta yang disebut model Copernicus. Pada model ini, Matahari dan bintang-bintang lainnya diam, sedangkan planet-planet (termasuk Bumi) bergerak mengelilingi Matahari. Hal ini dituliskannya melalui buku yang berjudul De revolutionibus orbium coelestium (Mengenai revolusi orbit langit). Model Copernicus ini disebut juga model heliosentris.

Model alam semesta selanjutnya berkembang dari model heliosentris. Tycho Brahe, seorang astronom Denmark, berhasil membuat atlas bintang modern pertama yang lengkap pada akhir abad ke–16. Model alam semesta yang dibuat oleh Tycho Brahe ini dianggap lebih tepat dibandingkan dengan model-model yang terdahulu karena model ini berdasarkan pada hasil pengamatan dan pengukuran posisi bintang-bintang yang dilakukannya di observatorium. Observatorium yang dibangun oleh Tycho Brahe ini merupakan observatorium pertama di dunia.

Penelitian Tycho Brahe ini, kemudian dilanjutkan oleh Johannes Kepler. Melalui data dan catatan astronomi yang ditinggalkan oleh Tycho Brahe, Kepler berhasil menemukan tiga hukum empiris tentang gerakan planet. Hukum Kepler tersebut dinyatakan sebagai berikut.

1. Hukum Pertama Kepler

Setiap planet bergerak pada lintasan elips dengan Matahari berada pada salah satu titik fokusnya.


2. Hukum Kedua Kepler

Garis yang menghubungkan Matahari dengan planet dalam selang waktu yang sama menghasilkan luas juring yang sama.


3. Hukum Ketiga Kepler

Kuadrat waktu edar planet (periode) berbanding lurus dengan pangkat tiga jarak planet itu dari Matahari.