Gerak dalam Dua Dimensi
Perhatikanlah lintasan yang dibentuk oleh bola basket yang dilemparkan ke dalam ring pada Gambar 1.14.
Lintasan bola basket tersebut berbentuk parabola. Gerak yang lintasannya berbentuk parabola disebut gerak parabola. Contoh umum gerak parabola adalah gerak benda yang dilemparkan ke atas membentuk sudut tertentu terhadap permukaan tanah. Gerak parabola dapat dipandang dalam dua arah, yaitu arah vertikal (sumbu-y) yang merupakan gerak lurus berubah beraturan (GLBB), dan arah horizontal (sumbu-x) yang merupakan gerak lurus beraturan (GLB). Perhatikan Gambar 1.15 berikut.
Gerak pada sumbu-x (horizontal) adalah gerak lurus beraturan karena kecepatan benda di setiap titik bernilai konstan dan berlaku persamaan
Adapun, jarak mendatar yang ditempuh oleh sebuah benda ditentukan oleh persamaan
Gerak pada sumbu-y (vertikal) adalah gerak lurus berubah beraturan, karena benda mengalami perubahan kecepatan akibat percepatan gravitasi Bumi. Dalam hal ini, arah gerak benda vertikal ke atas sehingga persamaan kecepatan geraknya pada setiap titik adalah
Posisi benda pada sumbu-y (menurut ketinggian) dapat dituliskan dengan persamaan berikut
1. Kecepatan dan Arah Kecepatan Benda di Sembarang Titik
Pada gerak parabola, benda memiliki kecepatan pada komponen sumbu-x dan sumbu-y sehingga besar kecepatan benda di sembarang titik secara matematis, dirumuskan sebagai berikut.
2. Beberapa Persamaan Khusus pada Gerak Parabola
Persamaan-persamaan khusus gerak parabola ini hanya berlaku untuk gerak parabola dengan lintasan dari tanah, kemudian kembali lagi ke tanah seperti pada Gambar 1.16.
Pada contoh gerak parabola tersebut, suatu benda bergerak dari titik A dengan kecepatan awal v0 dan sudut θ . Benda tersebut mencapai titik tertinggi di titik B dan jarak terjauh di titik C.
a. Waktu untuk Mencapai Titik Tertinggi (Titik B)
Pada saat benda yang melakukan gerak parabola mencapai titik tertinggi, kecepatan benda pada komponen vertikal (sumbu-y) vy = 0. Persamaannya adalah sebagai berikut.
b. Tinggi Maksimum (H )
Tinggi maksimum benda yang melakukan gerak parabola dapat ditentukan dari penurunan Persamaan (1–43) sebagai berikut.
Perbandingan antara jarak terjauh (X) dan tinggi maksimum (H) akan menghasilkan persamaan
3. Persamaan Vektor Gerak Parabola
Menurut analisis vektor, persamaan-persamaan gerak parabola dapat dituliskan sebagai berikut. Vektor posisi pada gerak parabola adalah
r = xi + yj