Fakta, Konsep, dan Berbagai Pembahasan Mengenai Termodinamika
Daftar Isi:
C. Hukum Kedua Termodinamika
1. Entropi
Pada pembahasan mengenai siklus Carnot dan mesin Carnot, proses termodinamika yang terjadi selama proses tersebut mampu mengubah seluruh energi kalor menjadi usaha dan tidak ada energi yang hilang. Siklus termodinamika yang telah dibahas pada subbab B merupakan siklus ideal yang tidak pernah ditemui dalam kehidupan nyata.
Sebagai contoh sederhana, missalkan Anda memasukkan sebuah bola besi panas ke dalam bejana yang berisi air dingin. Anda tentunya telah memahami bahwa kalor akan berpindah dari bola besi ke air sehingga suhu keduanya sama atau dikatakan keduanya telah berada dalam kesetimbangan termal. Namun, jika Anda membalik proses ini dengan cara memasukkan bola besi dingin ke dalam air panas, mungkinkah suhu bola besi tersebut naik dan suhu air turun dan keduanya mencapai kesetimbangan termal yang sama, seperti pada keadaan sebelumnya?
Proses termodinamika yang melakukan proses aliran kalor dari benda (reservoir) bersuhu rendah ke benda (reservoir) bersuhu tinggi, seperti yang dimisalkan tersebut tidak mungkin terjadi secara spontan (tanpa ada usaha yang diberikan ke dalam sistem).
Hal inilah yang kemudian diteliti oleh Clausius dan Kelvin-Planck sehingga menghasilkan rumusan Hukum Kedua Termodinamika. Berikut pernyataan Kevin-Planck dan Clausius.
a. Menurut Clausius, kalor tidak dapat berpindah dari benda bersuhu rendah ke benda bersuhu tinggi tanpa adanya usaha luar yang diberikan kepada sistem.
b. Menurut Kelvin-Planck, tidak mungkin membuat mesin yang bekerja dalam suatu siklus dan menghasilkan seluruh kalor yang diserapnya menjadi usaha.
Dalam menyatakan Hukum Kedua Termodinamika ini, Clausius memperkenalkan besaran baru yang disebut entropi (S). Entropi adalah besaran yang menyatakan banyaknya energi atau kalor yang tidak dapat diubah menjadi usaha. Ketika suatu sistem menyerap sejumlah kalor Q dari reservoir yang memiliki temperatur mutlak, entropi sistem tersebut akan meningkat dan entropi reservoirnya akan menurun sehingga perubahan entropi sistem dapat dinyatakan dengan persamaan
Persamaan (3–2) tersebut berlaku pada sistem yang mengalami siklus reversibel dan besarnya perubahan entropi ( ∆S) hanya bergantung pada keadaan akhir dan keadaan awal sistem.